O.P.Code: 19CS0505 R19 H.T.No. SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLO (AUTONOMOUS) B.Tech II Year I Semester Supplementary Examinations C and DATA STRUCTURES (Common to CSIT & CSE)			0
(AUTONOMOUS) B.Tech II Year I Semester Supplementary Examinations C and DATA STRUCTURES			
B.Tech II Year I Semester Supplementary Examinations C and DATA STRUCTURES	June-20	25	
Time: 3 Hours	Max.	Marl	cs: 60
(Answer all Five Units 5 x 12 = 60 Marks)			
1 a Discuss about while and for loops and write suitable examples.	C01	L6	6M
b Write a program to determine the Greatest Common Divisor (GCD) of two numbers.	of CO1	L3	6M
OR			
2 a Write a program to find sum of individual digits of a given number.	C01	L3	6M
b Explain else-if ladder with the help of flowchart and program.	CO 1	L5	6M
a What is recursion? What are the advantages and disadvantages of recursion?	CO2	L2	6M
b Write a C program to find the factorial of a given number using	CO2	L3	6M
recursion.			
What is an array? Explain declaration, initialization and applications of	CO2	L2	12M
multidimensional array with an example.			
5 a How do you define structure within a structure? Explain with an	CO3	L2	6M
example.	000		UII
b Illustrate the use of typedef with suitable example.	CO3	L3	6M
OR	CO3	ΤC	<i>C</i> M
6 a Define union and give the general syntax for union. Write suitable example	005	L6	6M
program.			
b How to declare and initialize a structure with examples?	CO3	L2	6M
UNIT-IV	604		1011
7 What is a stack? What are various operations that can be performed o them? Explain with an example.	n CO4	L2	12M
OR			
8 What is a queue? What are various operations that can be performed o	n CO4	L2	12M
them? Explain with an example.			
UNIT-V	~~~		103.5
9 Explain the applications of linked lists. OR	CO5	L2	12M
10 What do you mean by Searching? Explain sequential search and binar	v CO5	L2	12M
search with suitable example.	,		
*** END ***			

O.P.Code: 19CS0550 R19 H.T.No.			 (2)
O.P.Code: 19CS0550 R19 H.T.No. SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY	:: PUT	TUR	
(AUTONOMOUS)	00	05	
B.Tech. II Year I Semester Supplementary Examinations Ju RELATIONAL DATABASE MANAGEMENT SYSTEM		25	
(Open Elective-I) (Open Elective-I)	ax. Ma	ırks:	60
(Answer all Five Units $5 \times 12 = 60$ Marks)			
UNIT-I			
1 a Explain about various data models.	CO1	L2	6M
b Implement the DDL Commands – Table Creation, Altering the table	CO1	L1	6M
structures, truncating a table and dropping a table.	2		
OR			
2 a Explain about Database users and Administrators.	CO1	L2	6M
b Implement the DML Commands – Insert, Select Commands, update &	CO1	L1	6M
delete Commands.			
UNIT-II			
3 Illustrate different set operations in Relational algebra with an example.	CO2	L2	12M
OR	~~~		
4 a Discuss about the use of renaming operator.	CO2	L6	6M
b Write a short note on Weak Entities and give suitable example.	CO2	L2	6M
UNIT-III	CO		
5 Explain about aggregate operators with an example.	CO3	L2	12M
OR a What is outer joins with an examples?	CO2	т 1	
b Discuss about GROUP BY clauses and HAVING clauses.	CO3 CO3	L1	6M
UNIT-IV	005	LS	6M
7 Define normalization. List and Explain different normal forms with	CO4	L2	12M
examples.			
OR			
8 a Write short notes on 3NF with an example.	CO 4	L1	6M
b Explain about properties of decompositions.	CO 4	L2	6M
UNIT-V			
9 a Illustrate classification of storage structure.	CO5	L2	6M
b Explain Buffer Management in concurrency control system.	CO5	L2	6M
OR			
10 Classify various levels of RAID with neat diagrams	CO 5	L4	12M

*** END ***

 $\tilde{\chi}_{i}^{0}$

لمل	0.	P.	Code: 19CS0506 R19 H.T.No.			
eres.			SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)	ל :: PU T	TUR	
<i>2</i>			B.Tech. II Year I Semester Supplementary Examinations June	e-2025		
			DATABASE MANAGEMENT SYSTEMS			
1	Fime	e: ((Common to CSE & CSIT) - M	lax. M	arker	60
-			(Answer all Five Units $5 \times 12 = 60$ Marks)		ai no.	00
			UNIT-I			
	1		Explain about Database languages with examples.	CO1	L2	12M
	_		OR	COI		12111
	2	a	Draw the Architecture of Database.	CO1	L4	6M
		b		C01	L2	6M
			UNIT-II	001		UIVI
	3		Define Join? Explain different types of joins?	CO2	L2	12M
	J		OR	02		12111
	4	я	Explain the working of union, intersection and except operations.	CO2	L2	6M
	-		Distinguish between two set theoretic operations of relational algebra	CO2	L2 L2	6M
		~	with an example.	002		UIVI
			UNIT-III			
	5	a		CO3	L2	<i>C</i> M
	5	а	explain about second normal form.	COS	LL	6M
		h	Define functional dependencies. How are primary keys related to FD's.	CO3	L1	6M
		U	OR	COS	LI	UIVI
	6	я	Explain the following with suitable example:	CO3	L3	6M
	Ŭ		(i) Non- Loss decomposition. (ii) Prime Attributes.	COJ	LJ	UIVI
		b	Explain about demoralization.	CO3	L2	6M
			UNIT-IV	005		UNI
	7		Explain ACID properties and illustrate them through examples.	CO4	т э	1034
	,		OR	CO4	LJ	12M
	8		Determine the deadlock and 2-phase locking to ensure serial ziability in	CO4	L3	12M
	Ŭ		concurrency control with locking methods.	004	LJ	12111
			UNIT-V			
	9	0		005	TO	01
	9		Illustrate classification of storage structure.	CO5	L2	6M
		IJ	Explain concurrency control with lock based protocols. OR	CO5	L2	6M
	10		Write about the various levels of RAID with neat diagrams.	COF	т э	1984
	10		*** END ***	CO5	L3	12M

O.P.Code: 19CS0517

R19 SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR

(AUTONOMOUS)

B.Tech III Year I Semester Supplementary Examinations June-2025 DATA WAREHOUSING AND DATA MINING

H.T.No.

(CSE)

Time: 3 Hours

5

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

1	a What is data cleaning? Describe in detail the different methods for data	CO1	L5	6M
	Cleaning.			
	b How to classify data mining systems? Discuss.	CO1	L1	6M
	OR			
2	a Discuss the Major issues in Data mining.	CO1	L6	6M
	b Why do we pre-process the data? Discuss.	CO2	L1	6M
	UNIT-II			
3	Discuss in brief about schemas in multidimensional data model.	CO2	L6	12M
	OR			
4	Elaborate about Attribute Oriented Induction with example.	CO2	L6	12M
	UNIT-III			
5	a Discuss about Basic Concepts of Frequent Itemset mining.	CO3	L6	6M
	b What are the advantages of FP-Growth algorithm?	CO3	L1	6M
	OR			
6	What are the Draw backs of Apriori Algorithm? Explain about FP Growth	CO3	L4	12M
	Concept in Detail.			
	Concept in Detail.			
7		CO4	L2	12M
7	UNIT-IV	CO4	L2	12M
7 8	UNIT-IV Outline the concept of Classification by Decision Tree Induction.	CO4	L2 L6	12M 12M
	UNIT-IV Outline the concept of Classification by Decision Tree Induction. OR			
	UNIT-IV Outline the concept of Classification by Decision Tree Induction. OR Discuss about Rule based Classification method.	CO4	L6	
8	UNIT-IV Outline the concept of Classification by Decision Tree Induction. OR Discuss about Rule based Classification method. UNIT-V	CO4	L6	12M
8	UNIT-IV Outline the concept of Classification by Decision Tree Induction. OR Discuss about Rule based Classification method. UNIT-V What are the basic approaches for generating an agglomerative	CO4	L6	12M
8	UNIT-IV Outline the concept of Classification by Decision Tree Induction. OR Discuss about Rule based Classification method. UNIT-V What are the basic approaches for generating an agglomerative hierarchical clustering? Explain the algorithm.	CO4	L6	12M

2

0	_			<u> </u>		
Do	0.	P.C	Code: 19CS0544 R19 H.T.No.			_\$~
rt/blis			SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONÓMOUS)		TUR	
			B.Tech. IV Year I Semester Supplementary Examinations June	3-2025		
			SOFT COMPUTING (Common to CSIT & CSE)			
	Tir	ne	3 Hours	Max.	Mark	s: б0
			(Answer all Five Units $5 \times 12 = 60$ Marks)			
			UNIT-I			
	1	•	Illustrate the basic components of Artificial Intelligence and its	CO1	L3	8 M
	T	a	applications.	001		UIV
		h	Compare soft computing and hard computing.	CO1	L5	4 M
		D	OR	COI		
	2		Distinguish between Supervised Learning and Unsupervised Learning.	CO1	$\mathbf{L4}$	6M
	2	_		C01	L4 L5	6M
		b	Describe the different activation functions in Neural Networks.			
	3	a	Generalize the Adaptive Resonance Theory Neural Network.	CO2	\mathbf{L}_{6}	8M
		b	Identify some applications of ART Model.	CO2	L2	4.[
			OR			27
	4		Describe the structure of back propagation neural network and derive the	CO2	LŻ	12M
			learning rule for the back propagation algorithm.			
			UNIT-III			
	5	a	Explain with neat block diagram the various components of a Fuzzy Logic System.	CO3	L2	8M
		h	Differentiate the fuzzy sets and classical sets.	CO3	L4	4M
		U	OR			
	6	9	Demonstrate the membership functions in fuzzy logic.	CO3	L3	6M
	U		Define Fuzzi fication and explain membership value assignment in		L2	6M
		U	fuzzy logic.	000		
			UNIT-IV			
	_			CO4	L4	631
	7		Analyze Inversion and Deletion Operators in GA.			
		b	Describe the applications of genetic algorithm.	CO4	L1	654
	-		OR	COA	Τņ	1/33/
	8		Explain the basic terminologies in Genetic Algorithm and illustrate the	CO4	L3	12M
			working of GA?			
			UNIT-V			
	9		Define Hybrid System and Explain the Classification of hybrid systems.	C05	12	C1
		b	Compare Neural Processing and Fuzzy Processing.	C05	L5	Cal
			OR			
	10		Demonstrate the architecture of ANFIS network and Explain.	CO6	L3	12.M
			*** END ***			

•

O.P.Code:	19CS0539
------------------	----------

R19	÷	

	H.T.No.
91.1	

	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)										
	B.Tech. IV Year I Semester Supplementary Examinations June-2025 HUMAN COMPUTER INTERACTION										
	(Common to CSE & CSIT)										
Tir	ne: 3 Hours	Max.	Mar	ks: 60							
	(Answer all Five Units 5 x 12 = 60 Marks) UNIT-I										
1	Discuss the popularity of web user interfaces.	CO1	L2	12M							
	OR										
2	a Compare and Contrast the advantages and disadvantages of Graphical Systems.	CO 1	L4	6 M							
	b What are the benefits of a well-designed interface?	CO1	L1	6M							
3	a Discuss about interaction of people with computers.	CO2	L2	6M							
	b What are the human considerations in design? Explain.	CO2	L1	6M							
	OR										
4	a Write about the five important interface design goals.	CO2	L1	6M							
	b Justify amount of information in screen designing.	CO2	L5	6M							
	UNIT-III										
5	a Discuss elaborately various components of a Window.	CO3	L2	6M							
	b What is window in GUI? Explain various types of Windows.	CO3	L1	6M							
	OR										
6	a Illustrate about Text entry/Read Only Controls in user interface design.	CO4	L2	6M							
	b Examine various characteristics of device based controls.	CO4	L3	6M							
	UNIT-IV										
7	a Illustrate about creation of meaningful graphics, icons and images.	CO5	L2	6M							
	b Discuss various possible problems in choosing colors for screen design?	CO5		6M							
	OR										
8	Summarize the test	CO5	L2	12M							
	i) purpose of testing ii) importance of testing										
	UNIT-V										
9	a Explain in brief, various specification methods for building an interface	CO6	L2	6M							
	b Discuss the features of interface-building tools.	CO6	L2	6M							
	OR	000		UIVI							
10	Illustrate the following	CO6	L3	12M							
	i) Indirect pointing devices	000		AMATE							
	ii) Speech recognition										
	iii) Display technology										

*** END ***

1.161.161

						Q2
and the second s	0.	P.C	Code: 19CS0529 R19 H.T.No.			
Solar			SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLO (AUTONOMOUS)	GY:: PUT	ΓUR	
J			B.Tech IV Year I Semester Supplementary Examinations J	une-2025		
			Cloud Computing			
	Time:	3 F	(Computer Science and Engineering) Hours	Max. Mar	ks: 60	
		*	(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-1			
	1	a	Explain in detail about Scalable computing over the Internet.	CO1	L3	6M
		b	Discuss in detail about clusters of cooperative computers.	CO1	L4	6M
	2	a	OR Explain system models for distributed and cloud computing.	C01	L3	6M
		b	List and explain thevarious challenges of cloud computing.	CO1	L3	6M
			TINTE II			
	3	a	UNIT-II Differences between Infrastructure as a Service and Platform as a Service	CO2	L4	6M
		b	Compare the Iaas and Pass and Saas	CO2	L3	6M
			OR			
	4	a	Analyze the Public Cloud and Private Cloud.	CO2	L3	6 M
		b	Discuss the Importance about Life Cycle of Service Level Agreement.	CO2	L4	6M
			UNIT-III			
	5	a	Explain the levels of virtualization implementation	CO3	L3	6M
		b	Illustrate Hypervisor and Xen Architecture	CO3	L4	6M
			OR			
	6		Design the Dynamic Deployment of Virtual Clusters	CO3	L3	6M
		b	Discuss Server Consolidation in Data Centers	CO3	L2	6M
			UNIT-IV			
	7	a	Explain the key issues in the cloud?	CO4	L4	6M
		b	List out the common cloud risks	CO4	L3	6M
			OR			
	8	a	Explain about Identity and Access Management Architecture	CO4	L3	6M
	Ū				10	<u>(M</u>
		b	Discuss the Network level, Host level and the Application level	CO4	L2	6M
			UNIT-V			
	9	a	Compare mobile computing and cloud computing	C05	L3	6M
		b	Explain about the types of issues in mobile computing	C05	L2	6M
			OR			
	10	a	Discuss about security for mobile user with privacy	CO5	L3	6M
		b	List out the supporting performance at service level and cloud API	C05	L2	6M
			÷÷÷ መእጠኑ ***			

.

QV

		Code: 19HS0815 R19 H.T.No.									
L).P.(Code: 19HS0815 R19 H.T.No.									
		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)	Y:: PU]	ſTUR							
		B.Tech. IV Year I Semester Supplementary Examinations Jun	e-2025								
ENTREPRENEURSHIP DEVELOPMENT (Common to ECE, CSE & CSIT)											
Tim	e: (Iax. M	arke	60							
		(Answer all Five Units $5 \times 12 = 60$ Marks)		ains.	00						
		UNIT-I									
1	a	Explain the Functions of an Entrepreneur.	C01	L1	6M						
		What are the qualities of entrepreneurship?	C01	L1 L2	6M						
		OR	001		UIVI						
2		Entrepreneurs are supporting and developing the economy of a countryJustify	CO1	L3	12M						
		UNIT-II									
3	a		CO2	L1	6M						
	b	Discuss about Problems of MSMEs.	CO2	L1	6M						
		OR	001		UIVI						
4	a		CO2	L3	6M						
	b	Distinguish Between Sole Trade and Partenership.	CO2	L3	6M						
		UNIT-III									
5	a		CO3	L2	6M						
	b	Explain various Methods of generating ideas and Opportunities.	CO3	L2	6M						
		OR			0111						
6	a	Short note on Trade Mark and Patents.	CO3	L3	6M						
	b	Outline the merits of E-Commerce.	CO3	L4	6M						
		UNIT-IV									
7	a	List out various motivational theories and explain them in detail.	CO 4	L3	6M						
		Outline the EDP and discuss its advantages.	CO4	L4	6M						
		OR			01.1						
8	a	What is venture capital and also mention its advantages?	CO4	L1	6M						
	b	Explicate the role of consultancy organization in entrepreneurship	CO4	L3	6M						
		development.									
		UNIT-V									
9	a	Make note on features of the Project.	CO5	L3	6M						
		Elucidate the role of project planning in entrepreneurship.	CO5	L3	6M						
		OR									
10	a	Describe about Project post Feasibility analysis.	CO5	L2	6M						
	b	How can feasibility about economic and industry analysis be performed?	CO5	L3	6 M						
		*** END ***									

5

R19

о.					-						61
----	--	--	--	--	---	--	--	--	--	--	----

	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: (AUTONOMOUS)			
	B.Tech. III Year I Semester Supplementary Examinations Jun SOFTWARE ENGINEERING & TESTING (Computer Science & Information Technology)			
Time:	3 Hours Ma	x. Mai	rks: (60
Time.	(Answer all Five Units $5 \ge 12 = 60$ Marks) UNIT-I			
1	a Explain the spiral model of software development. What are the	CO1	L2	6M
	limitations of such model?		~ •	
	b Explain the Halstead theory of software science. Is it significant in	COI	L2	6M
	today's scenario of software development?			
	OR	CO1	L2	12M
2	Explain in detail the following software metrics with example.	COI		
	i) Function point ii) Information flow metrics			
	UNIT-II	CO2	L2	6M
3	a Differentiate functional and non-functional requirements.	CO2	L2 L2	6M
	b Describe the various steps of requirements engineering. Is it essential to	COP		UIVA
	follow these steps? OR			
4	a What are the components of an activity diagram? Explain their usage	CO2	L2	6M
4	with the help of an example.			
	b Write short notes on Data dictionary.	CO2	L1	6M
	UNIT-III			
5	a Discuss the objectives of software design. How do we transform an	CO3	L2	6M
_	informal design to a detailed design?			(3) F
	b What is module cohesion? Classify different type of module cohesion.	CO3	L2	6M
	OR	003	та	1014
6	Explain the following software reliability models.	CO3	L2	12M
	i) Basic Execution Time Model ii) Calendar Time Component Model			
	UNIT-IV	004	т э	1234
7	What is the difference between	CO 4	L2	12M
	i) Alpha testing & beta testing ii) Functional & structural testing			
	OR	CO 4	L1	6M
8	a What is the purpose of integration testing? How is it done?	CO4	L1 L2	6M
	b Differentiate between integration testing and system testing.	004		UIII
	UNIT-V	C05	L2	6M
9	a What is reverse engineering? Discuss levels of reverse engineering.		L2 L2	6M
	b What are configuration management activities? Draw the Performa of	005	لاند	UITE
	change request form.			
	- 1 1 1 1 6 Guard maintenance with help of a diagram	CO5	L2	12M
10	Explain the phases of software maintenance with help of a diagram.			

R19

H.T.No.	
---------	--

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech. IV Year I Semester Supplementary Examinations June-2025 **CRYPTOGRAPHY & NETWORK SECURITY** (Computer Science & Information Technology) **Time: 3 Hours** Max. Marks: 60 (Answer all Five Units $5 \times 12 = 60$ Marks) **UNIT-I** 1 a Illustrate different types of Security Attacks and Services in Detail. **CO1** L3 **6M b** Specify the components of encryption algorithm. **CO1** L2 **6M** OR 2 **a** List and briefly define the fundamental security design principles. **CO1** L2 **6M b** Categorize the transposition techniques with examples and also identify **CO1 L3 6M** the best transposition techniques among the list. **UNIT-II** 3 **a** Formulate the decryption and encryption using RSA algorithm with p=3**CO2** L4 **6M** q=11 e=7 and N=5. **b** Design and develop Triple DES algorithm and explain with neat Sketch. **CO2** L4**6M** OR 4 **a** Interpret working of AES with example. **CO2** L3 **6M b** Examine users A and B use the Diffie-Hellman key exchange technique **CO2 L4 6M** with a common prime q=11 and a primitive root α =7. a. If user A has private key Xa = 3, what is A's public key Ya ? b. If user B has private key Xb=6, what is B's public key Yb? c. What is the shared secret key? **UNIT-III** 5 a Summarizes the characteristics are needed in a secure hash function. **CO3** L2 **6M b** Explain about symmetric key distribution using symmetric encryption. **CO3** L2 **6M** OR a Consider prime field q=19, it has primitive roots { 2,3,10,13,14,15}, if CO3 6 L3 **6M** suppose $\alpha = 10$. Then write key generation by she choose XA=16. And also sign with hash value m=14 and alice choose secret no K=5. Verify the signature using Elgamal digital Signature Scheme. **b** Outline the X.509 directory authentication service. **CO3** L3 **6M** UNIT-IV 7 a Elaborate different level of awareness of a connection in HTTPS. **CO4** L2 **6M b** What are the security areas are addressed by IEEE 802.11i? and explain **CO4** L2 **6M** it. OR 8 **a** Describe the basic building block of an 802.11 WLAN. **CO4 L2 6M b** Explain about the SSH protocols. **CO4 L2 6M UNIT-V** 9 a How IPSec ESP does provide transport and Tunnel Mode operation? **CO5 L2 6M** Explain with a neat sketch. **b** Discuss in detail about S/MIME. **CO5** L2 **6M** OR **10** a What is PGP? Show the message format of PGP. **CO5** L2 **6M b** Interpret the internet key exchange with suitable example. **CO5** L2 **6M** *** END ***

O.P.Code:	19CI0611
------------------	----------

R19

			r A
			2

	0.P	.Code: 19CI0611 R19 H.T.No.		Τ	_ _
V J		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY	:: PUT	TUR	
C.		(AUTONOMOUS)	0005		
		B.Tech. IV Year I Semester Supplementary Examinations June SOFTWARE PROCESS & PROJECT MANAGEMENT			
		(Computer Science & Information Technology)			
T	`im	e: 3 Hours	Max.	Mar	ks: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
	4	UNIT-I			
	1	a Define Principles of Software Process Change. Explain the Six Basic	C01	L2	6M
		Principles of Software Process Change.b Differentiate Continuous and Staged Representations of CMMI.	001		
		OR	C01	L2	6M
	2	a Explain structure of CMMI in detail.	CO1	L2	6M
		b Identify Software Process Assessment principles. Justify each.	CO1	L3	6M
		UNIT-II			
	3	a Explain the predominant cost estimation process.	CO2	L2	6M
		b Generalize the quality improvements with a modern process.	CO2	L6	6M
	4	OR	GOA		(3 r
	4	a Illustrate the inception phase in life cycle process.b Discriminate the model based software architecture.	CO2 CO2		6M
		UNIT-III	02	L4	6M
	5	a Describe major milestone with life-cycle phases.	CO3	12	(M
		b Demonstrate the typical minor milestones in life cycle of an iteration.	CO3 CO3	L3 L2	6M 6M
		OR	005	La	UIVI
	6	a Identify sequence of project check points and define it.	CO3	L3	6M
		b Explain about periodic status assessments.	CO3	L2	6M
		UNIT-IV			
	7	a Outline the software development team activities.	CO4	L1	6M
		b Describe the project environment in details.	CO4	L3	6M
		OR			
	8	Explain the default pattern of life-cycle metrics evolution.	CO4	L2	12M
		UNIT-V			
	9	a Explain about The Command Center Processing and Display System-	CO5	L2	6M
	,	Replacement project.	60 -		<i>(</i>) <i>-</i>
	I	b Define component evolution. Give an example of a typical component evolution.	CO5	Ll	6M
		OR			
1	0	Define indicators in Project Control & Process Instrumentation.	CO5	L1	6M
		Summarize the distinguishing characteristics of each CSCI.		L2	6M
		*** END ***			

Page 1 of 1

÷

R19

H.T.No.

		4			
		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOG (AUTONOMOUS)	Y:: PU7	TUR	
		B.Tech. II Year I Semester Supplementary Examinations J SIGNALS, SYSTEMS AND RANDOM PROCESSES	une-20)25	
		(Electronics & Communications Engineering)			
Ti	me	e: 3 Hours	Max.	Mar	ks: 60
		(Answer all Five Units $5 \ge 12 = 60$ Marks)			
1		UNIT-I Explain the classification of signals in both continuous time and discrete	CO1	L2	12M
-		time with suitable examples.	COI	64	12111
		OR			
2		Discuss about Energy and Power signals.	CO1	L6	6M
	D	Determine whether the following systems are stable or not. (i) $y(t)=(t+5) u(t)$ (ii) $h(n)=a^n$ for $0 \le n \le 11$	CO 1	L3	6M
3		Develop the Exponential Fourier Series for the given signal below.	CO2	L3	12M
		-2π $-\pi$ O π 2π t			
		OR			
4	a	Explain about Fourier Transform of Periodic Signals.	CO2	L2	6M
	b	Find the Fourier Transform of the following signals using Properties.	CO2	L1	6M
		(i) $e^{-at} u(t)$ (ii) $\delta(t+2) + \delta(t+1) + \delta(t-1) + \delta(t-2)$			
5	a	Derive the Transfer function and impulse response of an LTI system.	CO3	L3	6M
		Define Linear time variant, Linear time-invariant, step response of the	CO3	LJ L1	6M
		system.			
6		OR Consider a stable LTI system that is characterized by the	CO	. .	
0		Consider a stable LTI system that is characterized by the differential equation $d^2y(t)/dt^2+4dy(t)/dt+3y(t) = dx(t)/dt+2x(t)$ find the	CO3	L4	12M
		response for an input $x(t)=e^{-t}u(t)$.			
_		UNIT-IV			
7		Determine the Laplace transform of the following signals using properties of Laplace transform.	CO5	L5	12M
		(i) $x(t)=t e^{-t} u(t)$ (ii) $x(t)=t e^{-2t} \sin 2t u(t)$			
		OR			
8		Explain the concept of random variable.	CO6	L2	6M
	b	Examine the distribution function $F_{xx}(x,y)$. (X,Y) $(0,0)$ $(1,2)$ $(2,3)$ $(3,2)$	CO6	L1	6M
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
-		UNIT-V			
9		Define Auto Correlation Function. State and explain any four properties	CO6	L2	12M
		of ACF. OR			
10	a	Briefly explain the concept of cross power density spectrum.	CO6	L2	6M
		Discuss the properties of cross power density spectrum.	CO6	L2	6M
		*** END ***	2		

57

		(AUTONOMOUS)			
		B.Tech IV Year I Semester Supplementary Examinations Jun DIGITAL IMAGE PROCESSING	e-2025		
		(Electronics & Communications Engineering)			
ſime	: 3	Hours	Iax. Ma	ırks:	60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I			
1		State the purpose of the image processing. List out the fundamental steps in digital image processing which can be applied to images.	l CO1	L1	6M
	b	Define image processing. Illustrate example fields of its usage. OR	CO1	L2	6M
2	a	Demonstrate the Arithmetic operations on digital images with relevant expressions.	t CO1	L2	6M
	b	List out the applications of image subtraction and image multiplication.	CO1	L1	6M
3	a	Prove the Separable property of 2D – Discrete Fourier Transform.	CO2	L4	6M
		Prove the Periodicity property of 2D – Discrete Fourier Transform.	CO2	L4	6M
1	~	OR			
4		Define KL Transform and give its applications. Compare different Image Transforms.	CO2	L1	6M
	Ň	UNIT-III	CO2	L2	6M
5	a	Define image enhancement and point operations in image enhancement.	CO3	L1	6M
	b	Illustrate the contrast stretching in image enhancement with suitable	CO3	L1	6M
		example.			
6		OR			
6	a	Draw the functional block diagram of pseudo colour processing and explain each block.	CO3	L1	6M
	b	Illustrate the method of the smoothing and sharpening of color images.	CO3	L2	6M
7	a	Draw the degradation/restoration model in image processing and	CO4	L1	6M
		describe the each part presented on it.		21	VIVI
	b	Explain the Rayleigh noise and Gamma noise with proper PDF	CO4	L1	6M
		expression.			
8	9	OR Define Hough transform with proper equations.	005	т 1	
v		Explain the concept of Watershed transform for image segmentation.	CO5 CO5	L1 L2	6M 6M
		UNIT-V	005		UIVI
9	a	Define the following terms :	CO6	L1	6M
		Data, Information, Data Redundancy, Data compression and	000	~	UIIA
		Compression Ratio.			
	b	Explain the Coding Redundancy with suitable example. OR	CO6	L2	6M
10	a	Compare the adaptive transform coding and non- adaptive transform coding.	CO6	L2	6M
		Discuss the different Image Formats and compression standards.	CO6	L2	6M

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR (AUTONOMOUS)

R19

*** END ***

Tin

いないで、

10.00

Time: 3 Hours

H.T.No. **R19**

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech. III Year I Semester Supplementary Examinations June-2025

SOIL MECHANICS

(Agricultural Engineering)

Max. Marks: 60

0

		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I			
1		Explain the phenomenon of formation and transportation of soils.	CO1	L2	6M
	D	Explain with sketches of various types of soil structures.	CO 1	L5	6M
2		OR Explain Relative density.	CO1	L2	
2		How to determine field density by using sand replacement method.	CO1	L2 L1	6M 6M
	~	UNIT-II	COI	1/1	UNI
3		What are the different methods for determination of coefficient of	CO2	L1	12M
		permeability in a laboratory? Explain any one method.			
		OR			
4	a	Explain the phenomenon of capillary rise in soil and write an expression	CO2	L2	6M
		for the Capillary rise.	coa	* 4	01
	D	What is Darcy's law? What are its limitations? UNIT-III	CO2	L1	6M
5		A concentrated load of 2000kN is applied at the ground surface.	CO3	L4	12M
U		Determine the vertical stress at a point p which is 6m directly below the	005	114	12111
		load. Also calculated the vertical stress at a point which is at a depth of			
		6m but at a horizontal a depth of 5m from the axis of the load.			
		OR			
6		Explain the concept of 'Pressure Bulb' in soils.	CO3	L5	6M
6		Explain the concept of 'Pressure Bulb' in soils. What do you understand by 'Pressure bulb'? Illustrate with sketches	CO3 CO3	L5 L3	6M 6M
6		Explain the concept of 'Pressure Bulb' in soils. What do you understand by 'Pressure bulb'? Illustrate with sketches plane method.			
		Explain the concept of 'Pressure Bulb' in soils. What do you understand by 'Pressure bulb'? Illustrate with sketches plane method. UNIT-IV	CO3	L3	6M
6 7		Explain the concept of 'Pressure Bulb' in soils. What do you understand by 'Pressure bulb'? Illustrate with sketches plane method. UNIT-IV Discuss the Terzaghi's theory of consolidation, state the various	CO3		
		Explain the concept of 'Pressure Bulb' in soils. What do you understand by 'Pressure bulb'? Illustrate with sketches plane method. UNIT-IV	CO3	L3	6M
		Explain the concept of 'Pressure Bulb' in soils. What do you understand by 'Pressure bulb'? Illustrate with sketches plane method. UNIT-IV Discuss the Terzaghi's theory of consolidation, state the various assumptions and their validity. OR A clay stratum, 7m thick has an initial void ratio of 2.05 and the	CO3	L3	6M
7		Explain the concept of 'Pressure Bulb' in soils. What do you understand by 'Pressure bulb'? Illustrate with sketches plane method. UNIT-IV Discuss the Terzaghi's theory of consolidation, state the various assumptions and their validity. OR A clay stratum, 7m thick has an initial void ratio of 2.05 and the effective overburden pressure of 140 kN/m ² when the sample is	CO3 CO4	L3 L6	6M 12M
7		Explain the concept of 'Pressure Bulb' in soils. What do you understand by 'Pressure bulb'? Illustrate with sketches plane method. UNIT-IV Discuss the Terzaghi's theory of consolidation, state the various assumptions and their validity. OR A clay stratum, 7m thick has an initial void ratio of 2.05 and the effective overburden pressure of 140 kN/m ² when the sample is subjected to an increases pressure of 140 kN/m ² the void ratio reduces to	CO3 CO4	L3 L6	6M 12M
7		Explain the concept of 'Pressure Bulb' in soils. What do you understand by 'Pressure bulb'? Illustrate with sketches plane method. UNIT-IV Discuss the Terzaghi's theory of consolidation, state the various assumptions and their validity. OR A clay stratum, 7m thick has an initial void ratio of 2.05 and the effective overburden pressure of 140 kN/m ² when the sample is subjected to an increases pressure of 140 kN/m ² the void ratio reduces to 1.44. Determine the volume of compressibility and final settlement of	CO3 CO4	L3 L6	6M 12M
7		Explain the concept of 'Pressure Bulb' in soils. What do you understand by 'Pressure bulb'? Illustrate with sketches plane method. UNIT-IV Discuss the Terzaghi's theory of consolidation, state the various assumptions and their validity. OR A clay stratum, 7m thick has an initial void ratio of 2.05 and the effective overburden pressure of 140 kN/m ² when the sample is subjected to an increases pressure of 140 kN/m ² the void ratio reduces to 1.44. Determine the volume of compressibility and final settlement of stratum.	CO3 CO4	L3 L6	6M 12M
7 8		Explain the concept of 'Pressure Bulb' in soils. What do you understand by 'Pressure bulb'? Illustrate with sketches plane method. UNIT-IV Discuss the Terzaghi's theory of consolidation, state the various assumptions and their validity. OR A clay stratum, 7m thick has an initial void ratio of 2.05 and the effective overburden pressure of 140 kN/m ² when the sample is subjected to an increases pressure of 140 kN/m ² the void ratio reduces to 1.44. Determine the volume of compressibility and final settlement of stratum. UNIT-V	CO3 CO4 CO4	L3 L6 L4	6M 12M 12M
7		Explain the concept of 'Pressure Bulb' in soils. What do you understand by 'Pressure bulb'? Illustrate with sketches plane method. UNIT-IV Discuss the Terzaghi's theory of consolidation, state the various assumptions and their validity. OR A clay stratum, 7m thick has an initial void ratio of 2.05 and the effective overburden pressure of 140 kN/m ² when the sample is subjected to an increases pressure of 140 kN/m ² the void ratio reduces to 1.44. Determine the volume of compressibility and final settlement of stratum. UNIT-V What is unconfined compression test? Sketch the apparatus used what	CO3 CO4 CO4	L3 L6	6M 12M
7 8		Explain the concept of 'Pressure Bulb' in soils. What do you understand by 'Pressure bulb'? Illustrate with sketches plane method. UNIT-IV Discuss the Terzaghi's theory of consolidation, state the various assumptions and their validity. OR A clay stratum, 7m thick has an initial void ratio of 2.05 and the effective overburden pressure of 140 kN/m ² when the sample is subjected to an increases pressure of 140 kN/m ² the void ratio reduces to 1.44. Determine the volume of compressibility and final settlement of stratum. UNIT-V	CO3 CO4 CO4	L3 L6 L4	6M 12M 12M
7 8		Explain the concept of 'Pressure Bulb' in soils. What do you understand by 'Pressure bulb'? Illustrate with sketches plane method. UNIT-IV Discuss the Terzaghi's theory of consolidation, state the various assumptions and their validity. OR A clay stratum, 7m thick has an initial void ratio of 2.05 and the effective overburden pressure of 140 kN/m ² when the sample is subjected to an increases pressure of 140 kN/m ² the void ratio reduces to 1.44. Determine the volume of compressibility and final settlement of stratum. UNIT-V What is unconfined compression test? Sketch the apparatus used what are its advantages over triaxial test?	CO3 CO4 CO4	L3 L6 L4	6M 12M 12M
7 8 9		Explain the concept of 'Pressure Bulb' in soils. What do you understand by 'Pressure bulb'? Illustrate with sketches plane method. UNIT-IV Discuss the Terzaghi's theory of consolidation, state the various assumptions and their validity. OR A clay stratum, 7m thick has an initial void ratio of 2.05 and the effective overburden pressure of 140 kN/m ² when the sample is subjected to an increases pressure of 140 kN/m ² the void ratio reduces to 1.44. Determine the volume of compressibility and final settlement of stratum. UNIT-V What is unconfined compression test? Sketch the apparatus used what are its advantages over triaxial test? OR A vane, 10.8 cm long, 7.2 cm in diameter, was pressed into a soft clay at the bottom of a bore hole. Torque was applied and the value at failure	CO4 CO4 CO5	L3 L6 L4 L1	6M 12M 12M
7 8 9		Explain the concept of 'Pressure Bulb' in soils. What do you understand by 'Pressure bulb'? Illustrate with sketches plane method. UNIT-IV Discuss the Terzaghi's theory of consolidation, state the various assumptions and their validity. OR A clay stratum, 7m thick has an initial void ratio of 2.05 and the effective overburden pressure of 140 kN/m ² when the sample is subjected to an increases pressure of 140 kN/m ² the void ratio reduces to 1.44. Determine the volume of compressibility and final settlement of stratum. UNIT-V What is unconfined compression test? Sketch the apparatus used what are its advantages over triaxial test? OR A vane, 10.8 cm long, 7.2 cm in diameter, was pressed into a soft clay at	CO4 CO4 CO5	L3 L6 L4 L1	6M 12M 12M

		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY	DIIT
		(AUTONOMOUS)	
		B.Tech. IV Year I Semester Supplementary Examinations June NEURAL NETWORKS AND FUZZY LOGIC	-2025
		(Electrical & Electronics Engineering)	
Time	: 3	Hours Ma	ax. Ma
		(Answer all Five Units $5 \times 12 = 60$ Marks)	
1	a	How artificial neuron is inspired from the biological neuron? Explain	CO1
	b	Why thresholding function is not used as activation function in Multi-	CO1
		Layer Feed Forward Networks.	
		OR	
2		Discuss different learning mechanisms used in artificial neural networks.	CO1

		UNIT-II			
3	a	Explain back propagation learning.	CO2	L2	6M
	b	How the hidden layer neurons influence representation of neural network?	CO2	L2	6M
		OR			
4		Explain ANN approach to load forecasting problem.	CO2	L2	12M
5	a	Explain in detail recurrent associative memory.	CO4	L3	6M
	b	Construct a BAM with 4 nodes in the first layer and 2 nodes in the	CO4	L3	6M
		second layer and symmetric weights. Establish the following three			
		associations			
		$(+1, +1, -1, -1) \rightarrow (+1, +1)$			
		$(+1, +1, +1, +1) \rightarrow (+1, -1)$			
		$(-1, -1, +1, +1) \rightarrow (-1, +1)$			
		, OR			
6		Explain how pattern pair is recalled in BAM with an example.	CO4	L2	12M
		UNIT-IV			
7	a	Explain Operations performed on crisp sets.	CO5	L2	6M
	b	Give the properties of crisp sets.	CO5	L2	6M
		OR			
8		Compare and contrast Fuzzy vs Crisp.	CO5	L2	12M
		UNIT-V			
9		Explain importance of defuzzification in fuzzy logic.	CO6	L3	12M
		OR			
10		Explain Centre of gravity defuzzification method with an example.	CO6	L3	12M

O.P.Code: 19EE0231

aminations June-2025 **ZY LOGIC**

*** END *** 6

H.T.No. **R19**

TECHNOLOGY:: PUTTUR

L2

L3

L2

6M

6M

12M

Max. Marks: 60

1

2

3

R19

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR (AUTONOMOUS) B.Tech II Year I Semester Supplementary Examinations June-2025 FLUID MECHANICS & HYDRAULIC MACHINERY (Mechanical Engineering) **Time: 3 Hours** Max. Marks: 60 (Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I a Differentiate kinematic viscosity and dynamic viscosity. Give their **CO1** L1 **6M** dimensions B A plate 0.025mm at a distance from a fixed plate moves at 60 cm/sec **CO1** L2 **6M** and requires a force of 2 N/m2. Determine viscosity between the plates. OR Derive the expression for pressure difference in differential manometers **CO1** L2 12M with neat sketches UNIT-II a Recall Local and convective accelerations. **CO2** L1 **6M b** Define the following terms: Velocity potential function, stream function **CO2 L1** 6M and flow net.

OR

4	Derive Bernoulli's equation and state assumptions.	CO2	L2	12M
5	Explain about orifice meter with neat sketches. Derive expression for rate of flow through orifice meter.	CO3	L2	12M

OR

6	Derive the expression for head loss in pipes due to sudden enlargement	CO3	L2	12M
	UNIT-IV			
7	a Derive an expression for the hydraulic efficiency when a liquid jet	CO 4	L2	6M

strikes a single fixed curved vane **b** A jet of 50 mm diameter delivers a stream of water at 20 m/s CO4 L4 **6M** perpendicular to a plate that moves away from the jet 5 m/s. Find the force on the plate, work done and efficiency of jet

OR

8 A jet of water moving at 12 m/s impinges on vane shaped to deflect the jet CO4 L2 **12M** through 120° when stationary. If the vane is moving at 5 m/s, find the angle of the jet so that there is no shock at inlet. What is the absolute velocity of the jet at exit in magnitude and direction and the work done per second per unit weight of water striking per second? Assume that the vane is smooth

UNIT-V

- 9 Explain the Classifications and efficiencies of turbines in detail **CO5** L2 **12M** OR What is the principle behind a centrifugal pump and derive an expression CO5 10 L2 **12M** for work done by the centrifugal pump
 - *** END ***

مأبى

0	.P.	Code: 19ME0312 R19 H.T.No.			ΤĨ				
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)								
		B.Tech. III Year I Semester Supplementary Examinations Jun MACHINE TOOLS (Mechanical Engineering)	1e-2025						
Tim	e:	lax. N	larks:	60					
		(Answer all Five Units 5 x 12 = 60 Marks)							
1	a	i) 'Metal cutting' ii) cutting ratio.	CO1	L1	6 M				
	b	Explain briefly orthogonal and oblique cutting with neat sketch. OR	CO1	L2	6M				
2	a	What are the conditions for producing continuous chips?	CO1	L1	6M				
	b	During orthogonal cutting a bar of 90mm diameter is reduced to 87 6mm. If the mean length of the out is 88 2mm and relationship in 150	CO1	L3	6M				
		87.6mm. If the mean length of the cut is 88.2mm and rake angle is 15°, calculate: (i) Cutting ratio (ii) Shear angle.							
3	a	Explain work done in metal cutting process.	CO2	L2	6M				
	b	Define cutting speed, feed, and depth of cut.	CO2	L1	6M				
4		OR Describe the factors affecting tool life and give Taylor' tool life equation.	CO2	L2	12M				
5		UNIT-III Name the different types of the lathes. Discuss the importance of the each lathe.	CO3	L1	12M				
(OR							
6	a	List the common tools and attachments used on Turret and Capstan lathes.	CO4	L1	6M				
	b	List the Turret lathe operations and explain any one operation with neat sketch.	CO 4	L1	6M				
7	-	UNIT-IV							
7		What do you understand by the term "Boring"? How are boring machines classified?	CO5	L2	6M				
0		Discuss briefly with neat sketch, a horizontal boring machine. OR	CO5	L2	6M				
8	a	Write short notes on (i) Face milling (ii) Straddle milling and (iii) End milling.	CO5	L2	6M				
	b	Explain briefly plain indexing and differential indexing with suitable example.	CO5	L2	6M				
9	b	UNIT-V What is an abrasive? How are abrasive classified? Write short notes on: i) Silicon carbide ii) Aluminium oxide iii) Abrasive size.	CO6 CO6	L2 L2	6M 6M				
10		OR Compare the center and center-less grinding machine. *** END ***	CO6	L1	12M				

Page 1 of 1

40

O.P.Code:19ME0337	R19	H.T.No.						
	· · · · · · · · · · · · · · · · · · ·							
SIDDHARTH INST	TUTE OF ENG	INEERING &	& TEC	HNOL	OGY:	PUTT	ſUR	
		NOMOUS)			_			
B.Tech. IV Yea	r I Semester Su				June-	2025		
	MECHATRO			'S				
	(Mechanical Engineering)							
Time: 3 Hours]	Max. 1	Mark	s: 60
	(Answer all Five	e Units 5 x 12	= 60 N	/larks)				
		UNIT-I						
1 List out the displacement	transducers. Exp	plain with neat	t sketcl	h any o	one of	CO1	L3	12M
displacement transducer.								
		OR						

2

Explain the various components in mechatronics system with neat sketch. **CO1 L3 12M** UNIT-II Define actuator. Actuators plays a primary role in mechatronics system CO2 3 **L4 12M** explains it. OR Illustrate the characteristics of actuator. 4 **CO2** L4 **12M** UNIT-III 5 What are the supporting elements include in microcontrollers with block CO3 L3 **12M** diagram? OR What are the supporting elements include in microcontrollers with block CO3 L2 6 **12M** diagram? **UNIT-IV** 7 Briefly explain the D-H notation joint coordinates with diagram. **CO4** L3 **12M**

OR

8 Write short notes on following: **CO4** L2 **12M** i)Forward transformation (ii) Reverse transformation

UNIT-V

9 Explain detail manual lead through programming method in robot CO5 L3 **12M** application.

·OR

10 Classify various programming languages used in computer controlled robots. CO5 L2 **12M**

*** END ***

「ないない」」、「「日本市の市大市の」」「「日本市」」、「日本市場」「日本市場」」

0.	.P.C	Code: 19ME0340 R19 H.T.No.			\Box
		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS) B.Tech IV Year I Semester Supplementary Examinations June ADVANCED WELDING PROCESSES		TUR	
Tim	e: 3	(Mechanical Engineering)	lax. Ma	irks:	60
		UNIT-I			
1		Explain the types of flames produced in gas welding with neat sketches.	C 01	L2	12M
		OR			
2	a	Classify the arc welding consumables.	C01	11	6 M
	b	What are the main purposes of electrode coatings?	C01	L	6M
		UNIT-II			
3		Discuss the process variables in SAW	CO2	L2	12 M
		OR			
4	a	Discuss MIG welding setup and process with neat sketch.	CO2	L2	\mathcal{CM}
	b	Give the area of application and advantages of MIG welding.	CO2	L3	6 M
		UNIT-III			
5	a	Give the desired characteristics of a welding power source.	CO3	L1	6 M
	b	Explain the general characteristics of a transformer.	CO3	1.2	()[
		OR			
6		Describe the LASER beam welding process with neat sketch.	C O4	L2	12 M
		UNIT-IV			
7		Classify the sold state welding process and explain friction welding with	CO5	1.2	$12 \mathrm{M}$
		neat sketch.			
		OR			
8		Explain the process variables and its effects in explosive welding.	C05	L2	12 M
0			C O6	Lt	1 E M
9		Describe the brazing process and explain the steps used in brazed joint. OR		£ L &	.∎ /:1¥ . L
10		With suitable diagram explain the ultrasonic welding process.	C O6	12	17 M
10		*** END ***			

Time: 3 Hours

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech IV Year I Semester Supplementary Examinations June-2025 **AUTOMOBILE ENGINEERING** (Mechanical Engineering)

Max. Marks: 60 (Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I a Explain in detail about different types of Automobiles. 1 **CO1** L2 **6M b** Explain with neat sketch about Abnormal Combustion Process. **CO1** L2 **6M** OR 2 a Explain the different types of Combustion Chamber in S.I Engine **CO1** L2 **6M b** What are the materials used for the Components of I.C engine? **CO1** L1**6M UNIT-II** 3 **a** Explain the fuel supply system in diesel engine with line diagram. **CO5 L2 6M b** Explain the working of turbocharger with a neat sketch. **CO1** L2 **6M** OR 4 Explain the working of three way catalytic converter with a neat **CO1** L2 **12M** sketch. **UNIT-III** 5 Name various types of components in Lighting System used in CO5 **L6 12M** automobile with neat sketch. OR 6 Write the uses of various components used in Horn System. **CO5** L1 **12M UNIT-IV** 7 a Discuss about over drive in detail. **CO6** L1 **6M b** Explain in details about Rear Axle with neat diagram. **CO6 L2 6M** OR Explain in details about Differential used in automobile with neat CO1 8 L2 **12M** diagram. UNIT-V 9 a Elucidate about Torque Bar. **CO3** L2 **6M b** Discuss clearly how the Pneumatic braking system works. L2 **CO6 6M** OR 10 Explain about Rigid Axle Suspension system with the help of a neat CO6 **L2 12M** layout.

*** END ***

H.T.No. **O.P.Code: 19ME0326 R19** SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech IV Year I Semester Supplementary Examinations June-2025 **MODERN MACHINING METHODS** (Mechanical Engineering) **Time: 3 Hours** Max. Marks: 60 (Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I 1 With a block diagram, discuss the classification of Non-Traditional **CO1** L2 **12M** Machining Processes. OR **a** Explain the working principle of water jet machining (WJM)? 2 **CO1 L4 6M b** What are the applications, advantages and disadvantages of water jet **CO1 L1 6M** machining (WJM)? **UNIT-II** 3 **a** Explain the working principle of wire cut EDM. **CO2** L2 **6M** b With a neat sketch, explain the construction and working of a Wire CO2 L1 **6M** Electrical Discharge Machining Process (WEDM). OR **a** Give a brief note on the advantages and limitations of the Electrical 4 **CO2** L4 **6M** Discharge Grinding (EDG) process. **b** Give a brief note on applications of the Electrical Discharge Grinding **CO2** L2 **6M** (EDG) process. UNIT-III 5 Draw the schematic layout of the Electro Chemical Machining (ECM) CO3 L2 12M set up and explain the major elements in it. OR a What are the different types of electrolytes used in Electro Chemical 6 **CO3** L1 **6M** Machining (ECM)? b Discuss the surface finish, accuracy and economic aspects of Electro **CO3** L1 **6M** Chemical Machining (ECM). UNIT-IV 7 Write the advantages, disadvantages Electron Beam Machining (EBM) **CO4** L2 **12M** OR 8 Draw the schematic layout of Plasma Arc Machining (PAM) set up and **CO4** L2 **12M** explain the major elements in it. **UNIT-V** 9 Explain about the Micro Fabrication Technique - Lithography with neat L1 **CO5 12M** Lithography flow diagram. OR 10 Discuss briefly about the its advantages, disadvantages and applications **CO6** L2 **12M** *** END ***

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech IV Year I Semester Supplementary Examinations June-2025 OPERATION RESEARCH (Atchenical Engineering)

R19

H.T.No.

					(Me	chanica	al Engi	neering)		Max. I	Marks	: 60
Tim	e:	3 Hours		(Ang	wer al	1 Five ¹	Units 5	x 12 = 60 Mar	ks)			
							UNIT-			C01	L3	6M
1		Solve the following LPP using Simplex method Maximize $Z=3X1+5X2+4X3$, Subjected to: $2X1+3X2 \le 8$, $2X2+5X3 \le 10$, $3X1+2X2+4X3 \le 15$ and $X1, X2, X3 \ge 0$									10	
	b	i What are	the characte the types of	ristic	s of o	peratio	n Rese	arch els		CO1	L2	6M
		iii. Explain	the procedu	re to	solve	the LP	P					
							OR			CO1	L3	6M
2	a	Subjected t	ollowing LP	P Mi 2X3 <	nimiz < 7, 22	e Z= X X1+4X	1 - 3X 2> -12	2+3X3 , - 4X1+3X2+82	X3<10	COI	Ц5	UNI
	ե	and X1,X2	,A 320 operations re	esearc	h. Ho	w OR	is usefi	al for decision n	nakers	CO1	L2	6M
	b	B Discuss	the importa-	nce m	iodel	in the s	solutior	1 of OK problem	ı			
		C. What ar	e the limitat	ions o	of line	ar prog	gramm	ing technique				
		247					UNIT	-11		CO1	L3	6M
3	a	Solve the f	ollowing tra	nspo	rtatior	n proble	em			CO2	LJ	UIVI
				Α	В	C	D	Available				
			Р	4	6	8	13	50				ř.
			Q	13	11	10	8	70				
			R	14	4	10	13	30				
			S	9	11	13	8	50				

Determine the Shipping scheme by the Northwest corner Rule and Test the above solution for Optimality.

105

35

25

b There are three parties who supply the following quantities of coal and CO2 L3 6M three consumers who require the coal as follows Find the minimum transportation cost

20

0000			
Party1	14 tons	Consumer A	6 tons
Part2	12 tons	Consumer B	10 tons
Part3	5tons	Consumer c	15 tons

The cost matrix is a shown below

Required

	A	B	C
1	6	8	4
2	4	9	3
3	1	2	6
			OR

4 a Consider the problem of assigning five operators to five machines. The **CO2** assignment costs are given in following Table M1M2 **M**3 M4 M5 7 7 4 A 8 В 9 6 4 5 6 C 11 5 7 5 -D 9 4 8 9 4 E 8 7 9 11 11 **b** Solve the following transportation problem to maximize profit **CO2** L3 **6M** В С D A Suppl y Р 40 25 22 23 100 Q 44 35 30 30 30 R 38 38 28 30 70 Demand 25 35 20 105 UNIT-III a Find the saddle point following GAME 5 **CO3** L3 **6M** Player B I Π III IV V Player A Ι 9 3 1 8 0 Π 5 7 4 6 6 III 2 4 4 3 8 5 2 2 IV 6 1 **b** i. What is game theory? What are the various types of games? **CO3** L2 **6M** ii What is Queuing Theory and what are the elements of Queuing system? iii Explain Pure strategy and Mixed strategy OR 6 **a** Solve the following GAME, using the Dominance Principle **CO3** L3 **6M** Firm B Firm . 4 10 6 5 6 7 8 5 9 10 9 8 11 10 9 4 6 10 6 4 i) State briefly the applications of queuing models. b **CO3** L2 **6M** ii) What are the limitations for Applications of queuing Theory. UNIT-IV 7 a A project has the following schedule. Construct PERT network and **CO4** L3 **6M** compute the total float for each activity. Find critical path with its duration Time in Time in Time in Activity Activity Activity month month month 1-2 2 3-6 6-9 8 5 1-3 2 3-7 5 7-8 4 1-4 1 4-6 3 8-9 3 2-54 5-8 1 b Explain the following i) critical event ii) critical activity iii) Total float CO4 L2

L3 **6M**

6M iv) Free float

8 a Determine the early start (Tr) and Late start (TL) in respect of all node CO4 L3 6M points and identify the critical path in respect of the following network.

b What is meant by critical path and explain the main features of critical **CO4 L2 6M** path.

UNIT-V

- 9 a Describe the various types of replacement situations and explain about CO5 L2 6M group replacement.
 - **b** The cost of a machine is Rs6100 and its scrap value is Rs. 100.The **CO5 L3 6M** maintenance costs found from experience are as follows. When should the machine be replaced?

Year	1	2	3	4	5	6	7	8
(n)							1.000	2000
Runnin	100	250	400	600	900	1200	1600	2000
g M/C								
cost in								
Rs			±					

OR

10 a What is mean by sequencing Problem and Define total elapsed time.

b Find the sequence that minimizes the total elapsed time required to complete the following Tasks on the machines in the order 1 - 2 - 3. Find also the minimum total elapsed time and the ideal times on the machines.

OIVI
6M

CO5

CO5

nachines.								
		A	В	C	D	E	F	G
Tasks time	1	3	8	7	4	9	8	7
on	2	4	3	2	5	1	4	3
machines	3	6	7	5	11	5	6	12

*** END ***

Marks: 60

L2

L2

L3

L2

L3

L2

6M

6M

6M

6M

12M

6M

O.P.Code:19ME0314 R19 H.T.No.		
SIDDHARTH INSTITUTE OF ENGINEERING & TEC (AUTONOMOUS) B.Tech. III Year I Semester Supplementary Examin THERMAL ENGINEERING (Mechanical Engineering) Time: 3 Hours (Answer all Five Units 5 x 12 = 60 1 UNIT-I	nations June-2025 Max. Ma Marks)	ar
 1 a Explain the working principle of single stage single acting air compressor. b Mention single stage compressor equation for work, clearance volume. 		
OR		
2 a Construct the multi stage compressor equation for work with inter cooling.	h perfect CO1	L
 b Explain the working of Roots Blower compressor with neat UNIT-II 	sketch CO1	L
3 A gas turbine unit receives air at 100 kPa and 300 K and adiabatically to 620 kPa with efficiency of the compressor 88% a heating value of 44180KJ/Kg and the Fuel/air ratio is 0.017 The turbine internal efficiency is 90%. Calculate the Comp turbine work and thermal efficiency. Take Cp= 1.005KJ/Kg K OR	%. The fuel has kg fuel /kg air. pressor work ,	I
Transfer shout the open cycle and closed cycle turbines wit	h neat sketches CO2	I
4 a Explain about the open cycle and clobed by the there		

4 and also draw the P-V & T-S diagrams. L1 **6M CO2 b** Define gas turbine and classification?

UNIT-III

Define Steam nozzle and also explain about expansion of steam in nozzle CO3 L1 **12M** 5 with neat sketch.

OR

In a convergent nozzle initial velocity 5 m/s dry sat steam at a pressure of 10 **12M** CO3 L3 6 bars and 250 0c is expanded Isentropically until the dryness fraction reaching 0.9. Find the final pressure of the steam and exit velocity of steam during the nozzle. By using Mollier diagram.

UNIT-IV

7 In a D-level turbine, the steam enters the wheel through a nozzle with a CO4 L3 12M velocity of 500 m/s and at an angle of 20 0 to the direction of motion of the blade. The blade speed is 200 m/s and the exit angle of the moving blade is 25°. Find the inlet angle of the moving blade, exit velocity of steam and its direction and work done per kg of steam.

OR

8 Explain about the various methods of Governing steam turbines with neat CO4 L2 12M sketches.

UNIT-V

9 The following observations were recorded in a test of one hour duration on a CO5 L3 12M single cylinder oil engine working on four stroke cycle.Bore = 300mm, Stroke = 450 mm, Fuel used = 8.8 kg, Calorific value of fuel = 41800 kJ/kg, Average speed = 200 rpm, m.e.p. = 5.8 bar, Brake friction load = 1860 N, Quantity of cooling water = 650 kg, Temperature rise = 22oC, Diameter of the brake wheel = 1.22 m. Calculate: i). Mechanical efficiency, ii). Brake thermal efficiency. Draw the heat balance sheet.

OR

10 a Explain the working of 4-stroke Petrol engine.CO5 L2 6M

b Show the theoretical and actual valve-timing diagram for Petrol engine. CO5 L2 6M *** END ***

H.T.No.

R19

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech. III Year I Semester Supplementary Examinations June-2025 **DESIGN OF MACHINE ELEMENTS - I**

(Mechanical Engineering)

Time: 3 Hours

(Answer all Five Units $5 \times 12 = 60$ Marks)

Max. Marks: 60

UNIT-I

a What do you mean by preferred numbers and explain the applications? 1 **CO1** L1**6M b** What is meant by factor of safety? Explain how it can be used in design **CO1** L1 **6M** applications.

OR

2 A mild steel shaft of 50 mm diameter is subjected to a bending moment **CO1** L3 **12M** of 2000 N-m and a torque T. If the yield point of the steel in tension is 200 MPa, find the maximum value of this torque without causing yielding of the shaft according to 1. The maximum principal stress; 2. The maximum shear stress; and 3. the maximum distortion strain energy theory of yielding.

UNIT-II

- a Define the term "stress concentration" with suitable diagram and "stress 3 **CO2** L1 **6M** concentration factor" also. **b** A machine component is subjected to a fluctuating stress that varies **CO2** L3 **6M**
 - from 40N/mm² to 100 N/mm². The corrected endurance limit of the machine component is 270 N/mm². The ultimate stress and yield point stress of the material are 600 and 400 N/mm² respectively. Find the factor of safety using: (i) Gerber formula. (ii) Solderberg line. (iii) Goodman line.

OR

4 A hot rolled steel shaft is subjected to a torsional moment that varies **CO2** L3 from 330 N.m clockwise to 110 N.m counter clockwise and an applied bending moment at a critical section varies from 440N-m to-220 N-m. The shaft is of uniform cross-section and no key way is present at the critical section. Determine the required shaft diameter. The material has an ultimate strength of 550 MN/m² and yield strength of 410 MN/m². Take the endurance limit as half the ultimate strength, factor of safety of 2, size factor of 0.85 and surface finish factor of 0.62.

UNIT-III

a Mentioned the important terms used in screw threads with a neat sketch 5 **CO3 L2 6M b** Describe the initial stresses in screw fasteners due to screwing up forces **CO3 L3 6M**

OR

- a Write advantages and disadvantages of welded joint over riveted joints 6 **CO3** L2 **6M b** Discuss the standard location of elements of a welding symbol
 - **CO3 L2 6M**

UNIT-IV

7 Design and draw a cotter joint to support a load varying from 30 kN in CO4 L2 **12M** compression to 30 kN in tension. The material used is carbon steel for which the following allowable stresses may be used. The load is applied statically. Tensile stress = compressive stress = 50 MPa ; shear stress = 35 MPa and crushing stress = 90 MPa.

OR

8 A shaft is supported by two bearings placed 1 m apart. A 600 mm CO4 L3 **12M**

12M

diameter pulley is mounted at a distance of 300 mm to the right of left hand bearing and this drives a pulley directly below it with the help of belt having maximum tension of 2.25 kN. Another pulley 400 mm diameter is placed 200 mm to the left of right hand bearing and is driven with the help of electric motor and belt, which is placed horizontally to the right. The angle of contact for both the pulleys is 180° and $\mu = 0.24$. Determine the suitable diameter for a solid shaft, allowing working stress of 63 MPa in tension and 42 MPa in shear for the material of shaft. Assume that the torque on one pulley is equal to that on the other pulley

Design and draw a protective type of cast iron flange coupling for a steel CO5 L1 12M shaft transmitting 15 kW at 200 r.p.m. and having an allowable shear stress of 40 MPa. The working stress in the bolts should not exceed 30 MPa. Assume that the same material is used for shaft and key and that the crushing stress is twice the value of its shear stress. The maximum torque is 25% greater than the full load torque. The shear stress for cast iron is 14 MPa.

UNIT-V

OR

10 Design and draw a cast iron flange coupling for a mild steel shaft transmitting 90 kW at 250 r p m. The allowable choor stress is the shaft

9

transmitting 90 kW at 250 r.p.m. The allowable shear stress in the shaft is 40 MPa and the angle of twist is not to exceed 1° in a length of 20 diameters. The allowable shear stress in the coupling bolts is 30 MPa.

CO5

L3

12M

*** END ***

Time: 3 Hours

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

R19

H.T.No.

B.Tech. III Year I Semester Supplementary Examinations June-2025 HEAT & MASS TRANSFER

(Agricultural Engineering)

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I

- a Enumerate the some important areas which are covered under the CO2 L1 6M discipline of heat transfer.
 b A plane wall is 150 mm thick and its wall area is 4.5 m². If its CO1 L4 6M conductivity is 9.35 W/m ⁰C and surface temperature are steady at 150
 - ^oC and 45^oC, determine i).Heat transfer across the plane wall,

ii). Temperature gradient in the flow direction **OR**

2	a	Distinguish between conduction, convection and radiation modes of heat	CO1	L3	6M
	,	transfer	CO1	L1	6M
	b	Define the following terms.			

i).Thermal Conductivity ii).Thermal Resistance

UNIT-II

The inner surface of a plane wall is at 60 °C and the over surface is at 35 CO2 L4 12M °C. Calculate the rate of heat transfer per m² of surface area of the wall, which is 220 mm thick. Take thermal conductivity of the brick is 0.51 W/m °C.

OR

- 4 a Derive an expression for heat conduction through a plane wall
 b Calculate the critical radius of insulation for asbestos (k = 0.172 W/m K)
 b Surrounding a pipe and exposed to room air at 300 K with h = 2.8 W/m
 c CO2 L1 6M
 C CO2 L4 6M
 C CO2 L4 6M
- 5 a What is the physical significance of the Nusselt number? How is it CO3 L1 6M defined.
 - b Assuming that a man can be represented by a cylinder 350 mm in CO3 L4 61 diameter and 1.65 m high with a surface temperature of 28 °C. Calculate the heat he would lose while standing in a 30 km/h wind at 12 °C

OR

- 6 In a straight tube of 60 mm diameter, water is flowing at a velocity of 12 CO3 L4 12M m/s. The tube surface temperature is maintained at 70°C and the following water is heated from the inlet temperature 15°C to an outlet temperature of 45°C. taking the physical properties of water at its mean bulk temperature, Calculate the following: i. The heat transfer coefficient from the tube surface to the water
 - ii. The heat transferred iii. The length of the tube

UNIT-IV

7 a What are the applications of boiling and condensation process?
b A vertical tube of 60 mm outside diameter and 1.2 m long is exposed to steam at atmospheric pressure. The outer surface of the tube is maintained at a temperature of 50 °C by circulated cold water through the tube. Calculate the following i). The rate of heat transfer to the coolant, and ii). The rate of condensation of steam.

OR
UIV.

 $\log_{1/2} \frac{1}{2r} \sum_{i=1}^r S_{ii}^* S_{ii}$

Ĺ,

		UK			
8		The effective temperature of the body having an area of 0.12 m^2 is	CO4	L4	12M
		527 °C. Calculate the following			
		i) The total rate of energy emission			
		ii) The wave length of maximum monochromatic emissive power			
		UNIT-V			
9		Derive the expression for Logarithmic Mean Temperature Difference	CO5	L3	12M
		(LMTD) in case of counter flow.			
		OR			
10	a	Explain correlation for mass transfer.	CO5	L2	6M
	b	List out the application of Mass Transfer.	CO5	L1	6M
		*** END ***			

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations June-2025

KINEMATICS OF MACHINERY

(Mechanical Engineering)

Max. Marks: 60

Time: 3 Hours

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

1 Explain the inversions of double slider crank chain with neat sketch and CO1 L1 12M list out the practical applications of inversions

OR

2 a Define Greshof's law and identify the mechanism produced by the CO1 L4 6M following linkage.

	b	Explicate the working of Oscillating cylinder engine with neat sketch.	CO1	L2	6M
		UNIT-II			
3	a	Sketch and explain the working of Grasshopper straight line mechanism	CO2	L2	6M
	b	Sketch and Describe the working of Peaucellier mechanism	CO2	L1	6M

OR

4 Describe the working of any two of exact straight line mechanisms, CO2 L2 12M With neat sketch.

UNIT-III

5 The dimensions of the mechanism, as shown in Fig. 7.30, are as follows: CO3 L3 12M AB = 0.45 m; BD = 1.5 m: BC = CE = 0.9 m. The crank AB turns uniformly at 180 r.p.m. in the clockwise direction and the blocks at D and E are working in frictionless guides. Draw the velocity diagram for the mechanism and find the velocities of the sliders D and E in their guides. Also determine the turning moment at A if a force of 500 N acts on D in the direction of arrow X and a force of 750 N acts on E in the direction of arrow Y.

OR

6 Explain with sketch the instantaneous centre method for determination CO4 L2 12M of velocities of links and mechanisms.

UNIT-IV

7 A cam is to give the following motion to a knife-edged follower : 1. **CO5 L2 12M** Outstroke during 60° of cam rotation ; 2. Dwell for the next 30° of cam rotation ; 3. Return stroke during next 60° of cam rotation, and 4. Dwell for the remaining 210° of cam rotation. The stroke of the follower is 40 mm and the minimum radius of the cam is 50 mm. The follower moves with uniform velocity during both the outstroke and return strokes. Draw the profile of the cam when (a) the axis of the follower is offset by 20 mm from the axis of the cam shaft.

OR

- 8 a Draw the displacement, velocity and acceleration diagrams for a CO5 L2 6M follower when it moves with simple harmonic motion.
 - **b** Draw the displacement, velocity and acceleration diagrams for a CO5 L2 6M follower when it moves with uniform Acceleration and retardation.

UNIT-V

9 a Explain the terms :(i) Module, (ii) Pressure angle, and (iii) Addendum CO6 L2 6M
b State and prove the law of gearing. Show that involute profile satisfies CO5 L5 6M the conditions for correct gearing.

OR

10 An epicyclic gear consists of three gears A, B and C as shown in Fig. CO6 L3 12M 13.10.The gear A has 72 internal teeth and gear C has 32 external teeth. The gear B meshes with both A and C and is carried on an arm EF which rotates about the center of A at 18 r.p.m.. If the gear A is fixed, determine the speed of gears B and C.

*** END ***

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR

H.T.No.

(AUTONOMOUS)

R19

B.Tech III Year I Semester Supplementary Examinations June – 2025

CONTROL SYSTEMS

(EEE)

Time: 3 Hours

Max. Marks: 60

1 Convert the block diagram to signal flow graph and determine the CO1 L1 12M transfer function C(S)/R(S).

2 Write the differential equation governing the mechanical system shown CO1 L1 12M in figure and determine the transfer function.

UNIT-II

3 List out the time domain specifications and derive the expressions for CO2 L1 12M Rise time, Peak time and Peak overshoot.

OR

4 a A For servo mechanisms with open loop transfer function given below CO2 L3 6M what type of input signal give rise to a constant steady state error and calculate their values.

$$G(S)H(S) = \frac{20 (S+2)}{S (S+1)(S+3)}$$

b Find all the time domain specifications for a unity feedback control CO2 L1 6M system whose open loop transfer function is given by $G(S) = \frac{25}{S(S+5)}$.

UNIT-III

- 5 With the help of Routh's stability criterion find the stability of the CO3 L1 12M following systems represented by the characteristic equations:
 - (i) $S^4 + 8S^3 + 18S^2 + 16S + 5 = 0$ (ii) $S^6 + 2S^5 + 8S^4 + 12S^3 + 20S^2 + 16S + 16 = 0$

6 Develop the root locus of the system whose open loop transfer function CO3 L3 12M is $G(S) H(S) = \frac{K}{S(S^2+4S+13)}$.

UNIT-IV

7 a Define and derive the expression for resonant frequencyCO4L16Mb Given $\xi = 0.7$ and Wn = 10 rad / sec. Find resonant peak, resonantCO4L56Mfrequency and bandwidth.

OR

- 8 Obtain the transfer function of Lead Compensator, draw pole zero CO4 L5 12M plot and write the procedure for design of Lead Compensator using Bode Plot.
 - A state model of a system is given as: $\dot{X} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} X + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} U$ and $Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} X$. Determine: (i) The Eigen Values. (ii) The State Transition Matrix

9

OR

10 a Explain the properties of STM. b Derive the expression for the transfer function from the state model. CO5 L2 4M $\dot{X} = AX + BU$ and Y = CX + DU

*** END ***

R19 H.1

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR						
(AUTONOMOUS) B.Tech III Year I Semester Supplementary Examinations June-2025						
	ELECTRICAL POWER GENERATION & TRANSMISSION S		IS			
Time	(Electrical and Electronics Engineering) M	ax. Ma	rkov	60		
1 11110	(Answer all Five Units $5 \times 12 = 60$ Marks)	ax. me	u KS;	00		
	UNIT-I					
1	a What factors are taken into account while selecting the site for a thermal	CO1	L2	6M		
	power station?b Explain the function of chimney and precipitator.	CO1	L2	6M		
	OR	COI	112	UIVI		
2	Draw a neat schematic diagram of a hydro-electric plant and explain the functions of various components.	CO1	L3	12M		
	UNIT-II					
3	a What are the classification of nuclear reactors?b Explain about the boiling water reactor.	CO2	L2	6M		
	OR	CO2	L3	6M		
4	Compare thermal, hydro and nuclear power plants on the basis of technical,	CO2	L2	12M		
	mechanical and economical aspects.					
5	a Derive the expression for the inductance of a three phase double circuit	CO3	L3	6M		
5	flat vertical spacing configuration.	005	L3	UIVI		
	b Calculate the inductance for a three phase double circuit line as shown in	CO3	L3	6 M		
	figure. Diameter of each conductor is 1.5cm					
	× Ob Ob					
	1 0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °					
	$\downarrow O c O a'$					
(OR	002	т э			
6	a Derive the expression for the capacitance of a single phase two wire line.	003	L3	6M		
	b A single phase transmission line has two parallel conductors 3m apart,	CO3	L2	6M		
	radius of each conductor being1cm. Calculate the capacitance of the line per km.					
	UNIT-IV					
7	Derive the ABCD constants of medium transmission line by using nominal-T and nominal Π methods.	CO4	L3	12M		
-	OR					
8	A 3-phase, 50Hz overhead transmission line 100km long has the following constant:	CO4	L3	12M		
	Resistance/km/phase= 0.1 ohm, Inductive reactance/km/phase= 0.2 ohm,					
	Capacitive susceptance/km/phase = 0.04×10^{-4} siemen. Determine					
	(i) sending end current (ii) sending end voltage (iii) sending end power forter (iv) transmission officiency when supplying a halonged load of					
	factor (iv) transmission efficiency when supplying a balanced load of 10,000kW at 66kV, 0.8 power factor lagging. Use nominal-T method.					
UNIT-V

- 9 a What are the factors affecting corona? And derive the expressions for CO5 L2 6M critical disruptive and visual critical voltage.
 - b Determine the corona characteristics of a 3-phase line 160km long, CO5 L3 6M conductor diameter 1.036cm, 2.44m delta spacing, air temperature 26.67°C, altitude 2440m, corresponding to an approximate barometric pressure of 73.15cm of Mercury, operating voltage 110kv at 50Hz. Assume data if required.(irregularity factor etc.)

OR

- 10 a Explain about the improvement of string efficiency by grading of units CO5 L3 6M and guard Ring.
 - b An overhead line has a span of 150 m between level supports. The CO5 conductor has a cross sectional are of 2cm². The ultimate strength is 5000kg/cm² and safety factor is 5. The specific gravity of the material is 8.9gm/cm³. The wind pressure is 1.5kg/m. calculate the height of the conductor above the ground level at which it should be supported if a minimum clearance of 7m is to be left between the ground and the conductor.

*** END ***

L3

6M

Page 1 of 2

Time: 3 Hours *Note: Answer PART-A from pages 2 to 20 and PART-B from 21 to 39.

1 0		
(Answ	ver all Six Units 6 X 10 = 60 Marks)	

PART-A **UNIT-I**

1		Discuss about various energy sources in detail	CO 1	L1	10M
		OR			
2		Define : (i) RMS value (ii) average value (iii) form factor (iv) peak	CO1	L1	10M
		factor (v) Prove that the form factor of the sinusoidal wave is 1.11			
		UNIT-II			
3	а	State Thevenin's theorem.	CO2	L1	2M
	b	Find the Thevenin's equivalent circuit across AB for the circuit shown	CO2	L3	8M
		OR			
4	а	Explain in detail about Impedance parameters.	CO2	L3	5M
	b	Briefly discuss about Admittance parameters .	CO2	L2	5 M
		UNIT-III			
5	а	Derive Torque equation of dc motor.	CO3	L2	5 M
	b	The counter emf of Shunt motor is 227 V. The field resistance is 160Ω	CO3	L3	5M
		and field current 1.5A. If the line current is 36.5A, find the armature			
		resistance also find armature current when the motor is stationary.			
		OR			
6	a	Derive EMF equation of a transformer.	CO3	L2	5 M

a Derive EMF equation of a transformer. **CO**3 L2b Explain constructional details of transformer. **CO3** L3 **5M**

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR

(AUTONOMOUS)

i uli

R19

B.Tech II Year | Semester Supplementary Examinations June-2025 **BASIC ELECTRICAL & ELECTRONICS ENGINEERING**

(Mechanical Engineering)

Max. Marks: 60

PART-B

UNIT-IV

7 Describe the working of a PN junction diode when it is connected in C04 L3 10M forward bias and reverse bias. Draw VI Characteristics of PN Junction Diode.

OR

8	a	Draw the circuit diagram of a Bridge Rectifier and explain its operation	CO 4	L3	5M	
		with input and output waveforms.				
	b	Discuss the operation of full wave rectifier with capacitor filter.	CO4	L1	5M	
		UNIT-V				
9	а	Describe in detail the working of an NPN bipolar junction transistor.	CO5	L2	4M	
		Why is it called Bipolar.				
	b	Explain with the help of diagrams various types of circuit configurations,	CO5	L3	6M	
		which can be obtained from a bipolar junction transistor.				
		OR				
10	а	Write the application of a transistor and explain the transistor acts a	CO5	L1	5M	
		switch.				
	b	Explain in detail how a transistor working as an amplifier.	CO5	L3	5M	
		UNIT-VI				
11	а	Explain the construction and principle of operation of N-channel JFET.	CO6	L3	5M	
	b	Explain the output characteristics of JFET.	CO6	L3	5M	
		OR				
12	а	Write the JFET applications.	CO 6	L1	5M	
	b	Explain how the JFET working as a switch.	CO6	L3	5M	

*** END ***

UNIT-V

9 A copper cylinder, 90 cm long, 40 cm external diameter and wall CO6 L3 12M thickness 6 mm has its both ends closed by rigid blank flanges. It is initially full of oil at atmospheric pressure. Calculate additional volume of oil which must be pumped into it in order to raise the oil pressure to 5 N/mm2 above atmospheric pressure. For copper assume E= 1.0 x 105 N/mm2 and Poisson's ratio 1/3. Take bulk modulus of oil as K= 2.6 x 103 N/mm2.

OR

10 A steel cylinder of 300 mm external diameter is to be shrunk to another CO6 L3 steel cylinder of 150 mm internal diameter. After shrinking, the diameter at the junction is 250 mm and radial pressure at the common junction is 28 N/mm2. Find the original difference in radii at the junction. Take E = 2×105 N/mm2.

*** END ***

12M

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

R19

H.T.No.

(AUTONOMOUS)						
	B.Tech II Year Semester Supplementary Examinations June-2025					
	PROBABILITY, NUMERICAL METHODS AND TRANSFO (Electrical & Electronics Engineering)	RMS				
Time	: 3 Hours	iax. Ma	arks:	60		
	(Answer all Five Units $5 \times 12 = 60$ Marks)					
	UNIT-I					
1	 a Two cards are selected at random from 10 cards numbered 1 to 10. Find the probability that the sum is even if (i) The two cards are drawn together (ii) The two cards drawn one after other with replacement b Out of 15 items 4 are not in good condition 4 are selected at random. 	CO1	L2	6M		
	Apply the probability that (i) All are not good (ii) Two are not good	CO1	L2	6M		
	OR					
2	 a Two dice are thrown. Let A be the event that the sum of the point on the faces is 9. Let B be the event that at least one number is 6. Find (i) P(A ∩ B) (ii) P(A ∪ B) (iii) P(A^c ∪ B^c) (iv) P(A^c ∩ B^c) (v) P(A^c ∩ B) 	CO1	L3	6M		
	b The probability that students A, B, C, D solve the problem are $\frac{1}{3}$, $\frac{2}{5}$,					
		CO1	L2	6M		
	$\frac{1}{5}$ and $\frac{1}{4}$ respectively. If all of them try to solve the problem, what is the					
	probability that the problem is solved.					
	UNIT-II					
3	Find a positive root of $f(x) = e^x - 3$ correct to two decimal places by Direction method	CO2	L3	12M		
	Bisection method OR					
4	a Using Newton's forward interpolation formula and the given table of					
	values, Obtain the value of $f(x)$ when $x=1.4$.	600	1.0			
	x 1.1 1.3 1.5 1.7 1.9	CO2	L2	6M		
	x 1.1 1.5 1.5 1.7 1.9 f(x) 0.21 0.69 1.25 1.89 2.61					
	b Use Newton's backward interpolation formula to find $f(32)$ given	CO2	L3	12M		
	f(25) = 0.2707, f(30) = 0.3027, f(35) = 0.3386, f(40) = 0.3794.	002	LJ	12111		
	UNIT-III					
5	Tabulate $y(0.1)$, $y(0.2)$ and $y(0.3)$ using Taylor's series method given that	CO3	τ2	12M		
	$y^1 = y^2 + x$ and $y(0) = 1$	CO3	L3	12111		
	OR					
	<u>,</u>					
6	a Calculate $\int_{0}^{4} e^{x} dx$ by Simpson's $\frac{3}{8}$ rule with 12 sub divisions.	CO3	L2	6M		
	b Evaluate $\int_{1}^{7} x^2 \log x dx$ by Trapezoidal rule by taking 10 sub divisions.	CO3	L3	6M		
	3					

Charles and

34

	UNIT-IV			
7	a Find the Laplace transform of $f(t) = \frac{1 - \cos at}{t}$	CO 4	L2	6M
	b Find $L^{-1}\left\{\frac{3s-2}{s^2-4s+20}\right\}$ by using first shifting theorem	CO4	L2	6M
	OR			
8	Applying Laplace transform method to solve $y^{11} - 3y^1 + 2y = 4t + e^{3t}$ where $y(0) = 1, y^1(0) = 1$	CO 4	L3	12M
	UNIT-V			
9	a Determine the value of $Z[(-2)^n]$	CO5	L2	6M
	b Evaluate $Z^{-1}\left[\frac{z^2}{(z-1)(z-3)}\right]$, Using Convolution theorem.	CO5	L3	6M
	OR			
10	Applying the Z –transform, solve $y_{n+2} - 6y_{n+1} + 8y_n = 2^n + 6n$	CO5	L3	12M

*** END ***

d.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year I Semester Supplementary Examinations June-2025

ENGINEERING MECHANICS (Common to CE, AGE & ME)

Time: 3 Hours

1

(Answer all Five Units $5 \times 12 = 60$ Marks)

Max. Marks: 60

State and prove Varignon's theorem.

CO1 L4 12M

- 2 a State and prove parallelogram law of forces
 - b A system of forces are acting at the corners of a rectangular block as shown in the figure below. Determine the magnitude and direction of the resultant force.
 CO1 L4 6M

3 A screw jack raises a load of 40 kN. The screw is square threaded CO2 L4 12M having three threads per 20 mm length and 40 mm in diameter. Calculate the force required at the end of a lever 400 mm long measured from the axis of the screw, if the coefficient of friction between screw and nut is 0.12

OR

Find the value of ' Θ ' if the blocks 'A' and 'B' shown in the figure CO2 L3 12M below have impending motion. Given block A = 20 kg, block B = 20 kg, $\mu_A = \mu_B = 0.25$.

5 An I-section is made up of three rectangles as shown in the figure below. CO3 L4 12M Find the moment of inertia of the section about the horizontal axis passing through the centre of gravity of the section.

6 Find the centre of gravity of a channel section $100 \text{ mm} \times 50 \text{ mm} \times 15 \text{ CO3}$ L4 12M mm as shown in the figure below.

7 A rectangular hole is made in a triangular section as shown in the figure CO4 L4 12M below. Determine the moment of inertia of the section about X-X axis passing through its centre of gravity and the base BC.

8 Find the moment of inertia about the centroidal X-X and Y-Y axes of CO4 L4 12M the angle section shown in the figure below.

9 Determine the forces in all the members of the truss shown in the figure CO5 L4 12M below.

10 Explain the procedure to find forces in members of truss by using CO5 L2 12M method of joints.

] R19

U.P					
		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOG	Y:: PUT	TUR	
		(AUTONOMOUS) B.Tech I Year I Semester Supplementary Examinations June			
		ALGEBRA AND CALCULUS			
T :		(Mechanical Engineering) 3 Hours	Max.	Mar	ks: 60
1 1111		(Answer all Five Units $5 \ge 12 = 60$ Marks)		~	
		UNIT-I			
1			CO1	т 1	
1	a	Reduce the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$ into Echelon form by using		LI	6M
		row transformations and find its rank.	001	т 1	(M
	b	Find whether the following equations are consistent if so solve	COI	L1	6M
		x + y + 2z = 4, $2x - y + 3z = 9$, $3x - y - z = 2$.			
2		OR OR	CO1	L3	12M
		Reduce the Quadratic form $3x^2 + 3y^2 + 3z^2 + 2xy + 2xz - 2yz$			
		into the sum of squares formed by Orthogonal transformation.			
2		UNIT-II State and verify Rolle's Theorem for the function	CO2	L4	6M
3	a		002	E.	UIII
		$f(x) = \log \left \frac{x^2 + ab}{x(a+b)} \right \text{ in } [a, b], (x \neq 0).$			
		$\lfloor x(a+b) \rfloor$	COA	1.2	<u>AN</u>
	b	Show that $1+x < e^x < 1+x e^x$, $\forall x > 0$ using Lagrange's mean value	CO2	L3	6M
		theorem			
		OR	CO2	16	6M
4	a	Expand $f(x) = \sin x$ in powers of $\left(x - \frac{\pi}{2}\right)$ up to the term containing	CO2	L6	UIVI
		$\left(x-\frac{\pi}{2}\right)^4$ assigning Taylor's series.			
			CO^{2}	L6	6M
	b	Obtain the Maclaurin's series expression for the function	02	LU	UIVI
		$f(x) = \log(1+x)$			
		UNIT-III			
5	a	If $u = \tan^{-1} \left[\frac{2xy}{x^2 - y^2} \right]$ then prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.	CO3	L5	6M
		$\begin{bmatrix} x^2 - y^2 \end{bmatrix} \qquad \qquad \partial x^2 \partial y^2$			
	b	Prove that $JJ' = 1$ for the functions $x = u(1-v), y = uv$.	CO3	L5	6M
		OR Varify if any functionally dependent $u = 2r + y + 3r + y = 2r - y = 7$	CO3	L5	6M
6	a	Verify if are functionally dependent $u = 2x - y + 3z$, $v = 2x - y - z$,	005	13	UIT
		w = 2x - y + z and if so, find the relation between them.			

一部之前,是我的,你就是我就能有一些的我的人的现在

b Using Lagrange's method of undetermined multipliers, find the CO3 L3 6M minimum value of $x^2 + y^2 + z^2$ subject to the condition x + y + z = 1.

UNIT-IV

7 a Evaluate
$$\int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y+z} dz dy dx$$
. CO4 L5 6M

b Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 - x^2}} y \sqrt{x^2 + y^2} \, dy \, dx$ by changing into polar **CO4 L5 6M**

coordinates.

OR

8 a Evaluate $\int \int (x^2 + y^2) dx dy$ in the positive quadrant for which CO4 L5 6M $x + y \le 1$.

b By changing the order of integration, evaluate the double integral CO4 L3 6M

$$\int_0^{4a} \int_{x^2}^{2\sqrt{ax}} dy \, dx$$

9 a Prove that by using Beta function $\int_{0}^{1} \frac{x}{\sqrt{1-x^2}} dx = \frac{1}{2}\beta(1,\frac{1}{2})$ CO5 L5 6M

b Define Beta and Gamma functions and Prove that $\Gamma(1) = 1$ CO5 L3 6M OR

10 a Show that
$$\int_{0}^{1} \frac{x^2}{\sqrt{1-x^4}} dx \times \int_{0}^{1} \frac{1}{\sqrt{1-x^4}} dx = \frac{\pi}{4}$$
 CO5 L2 6M

b Show that
$$\int_{0}^{\infty} x^4 e^{-x^2} dx = \frac{3\sqrt{\pi}}{8}$$
 CO5 L2 6M

*** END ***

O.P.Code: 19HS0834 R19 H.T.No.						
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech II Year I Semester Supplementary Examinations June-2025 NUMERICAL METHODS AND TRANSFORMS						
Time: 3 Hours (Electronics & Communications Engineering) (Answer all Five Units 5 x 12 = 60 Marks) UNIT-I	Max. <u>N</u>	larks:	60			
1 Find the root of the equation $x \log_{10}(x) = 1.2$ by Regula-falsi method correct to three decimal palces. OR	C01	L3	12M			
2 Estimate the values of $f(42)$ from the following data: x 20 25 30 35 40 45	C01	L4	12M			
$f(x) = 354 = 332 = 291 = 260 = 231 = 204$ $UNIT-II$ $J = 0.2 \text{ and } x = 0.4 \text{ given that } y(0) = 1,$ $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}.$	CO2	L3	12M			
4 $\int_{4}^{5.2} \log x dx$ by (a) Trapezoidal rule (b) Simpson's 1/3 rule	CO2	L3	12M			
(c) Simpson's 3/8 rule and compare with actual value. UNIT-III 5 a Using Laplace transform evaluate the integral $\int_{0}^{\infty} \frac{\cos at - \cos bt}{t} dt$ b $L^{-1}\left(\frac{1}{(s^{2}+1)(s^{2}+9)}\right)$ using Convolution theorem.	C03	L3 L3	6M 6M			
6 Solve the following differential equation using Laplace transform: $y'' + 2y' + 5y = 3e^{-t}$ sint; $y(0) = 0, y'(0) = 3$ UNIT-IV	CO3	L4	12M			
 7 a Find the Fourier series of the function f(x) = x²; 0 ≤ x ≤ 2π b Obtain the Fourier series expansion of f(x) = (π - x)² in 	CO4 CO4	L2 L3	6M 6M			
$0 < x < 2\pi$. Hence show that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$ OR 8 a Find the Fourier cosine series of the function	CO 4	T O				
 b Find the half range sine series expansion of f(x) = x(2-x); 0 < x < 2 	CO4 CO4	L3 L3	6M 6M			

ø

68

а а

^a Find the Fourier transform of $f(x) = \begin{cases} UNIT-V \\ 1-x^2 & for \quad |x| \le 1 \\ 0 & for \quad |x| > 1 \end{cases}$ 9 **CO5 L3 6M** Hence evaluate $\int_0^\infty \frac{x \cos x - \sin x}{x^3} \cos \frac{x}{2}$ b Find the Fourier transform of $f(x) = e^{\frac{x^2}{2}}$; $-\infty < x < \infty$ **CO5** L3 **6M** OR 10 a Show that $F_s[x f(x)] = -\frac{d}{ds} \{F_c(s)\}$ b Find the Fourier cosine transform of f(x) =**CO5 L2 6M CO5** L2 **6M** $\begin{cases} x, \ for \ 0 < x < 1 \\ 2 - x, for \ 1 < x < 2 \\ 0, \ for \ x > 2 \end{cases}$

*** END ***

